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Internally consistent and properly scaled o’-substituent constants for (organo- 
metal)-methyl groups are derived from several photophysical data sets. These 
UC-values are well correlated by a model which considers that stabilization of an 
adjacent electron-deficient center is proportional to the polarizability of the 
carbon-metal bond as measured by bond refractions and expressed in a group 
polarizability function. The model also accommodates the hyperconjugative 
effects shown by P-deuterium substitution in solvolysis reactions and points to 
nonhyperconjugative effects as the basis of the Baker-Nathan order. A “best 
set” of 6-values for the -CH,MR, substituents (M = C, Si, Ge, Sn, Pb, Hg; 
R = Me, Ph or X) is suggested. Seventeen other CJ+ values for organonietallic 
substituents are presented. 

Introduction 

a’-Constants have found great utility in the study of reactions in which the 
substituent is directly conjugated to a cationic reactive center [ 11. In our work 
on the elimination reactions of functionally-substituted organometallics de- 
scribed in the accompanying paper [ 23, we needed a 09-value for the -CH2SiMe3 
group. A search of the literature revealed values that varied from -0.234 [ 3 ] to 
-0.87 [4] with several intermediate values [ 51. The most reliable value appears 
to be that of Eabom [6], -0.54, determined by the solvolysis of the p-substi- 
tuted cumyl chloride in 90% aqueous acetone, the same method used by Brown 
and Okamoto [ 7] in their definition of the cT+-value. Fe% other organometallic 
substituent constants have been determined in this way, most of the constants 
available have been derived from secondary methods, mainly Hanstein, Berwin 
and Traylor’s [5] cprrelation of o’-values to the charge-transfer (CT) frequen- 
cies of substituted-benzene tetracyanoethylene (TCNE) moledular complexes. 
Of prime importance to our work [Z ] was a correct scaling of the organometal- 
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lit substituent constants to that of the methyl group (d = -0.31) [7]. The CT- 
correlation results in values of -6.25 and -6.66 for methyl and -CH$3iMe3, 
respectively [ 53. The extremely sensitive nature of the acid-catalyzed elimina- 
tion reaction of Me3SiCH2CR20H (p’ = -11) could lead to differences of more 
than several orders of magnitude in predicted rates ratios depending on which 
a’values are used. 

By applying an additional restriction to the CT-method for the determina- 
tion of c+-values and considering other sets of experimental data which had gen- 
erally been used by the original authors to derive o’constants, we have devel- 
oped an internally consistent and properly scaled (to methyl) set of c+constants 
for the organometallic substituents -CH2MR3 and -CH,HgX, where M = C, Si, 
Ge, Sn, Pb; R = Me or Ph; and X = alkyl or halogen. In addition, o’constants 
for several poly-metal groups are included. The magnitudes of these newiy- 
suggested values are in excellent agreement with a model for the hypercon- 
jugating ability of -CH2-G groups based upon the polarizability of the G group 
expressed in the terms of the bond refractivities of the bonds in the hypercon- 
jugating group. This model also predicts quantitatively the direction and mag- 
nitude of fi-deuterium secondary-kinetic isotope effects in solvolysis reactions. 

Hanstein, Berwin and Traylor [5] originally recognized two limitations on 
the nature of the substituents which would give a valid Hammett-type relation- 
ship between CT frequencies of TCNE-PhY complexes and @+-constants of-Y, 
i.e., the substituent must be electron releasing and the ionization potential of 
the aliphatic analog, R-Y, should be equal to or lower than that of benzene. In 
order to improve the accuracy of this correlatioa for the organometallic groups 

TABLE 1 

CHARGE TRANSFER FREQUENCIES OF TETRACYANOETHYLENE-PhY COMPLEXES = AND 
INITIAL ESTIMATES OF o+-CONSTANTS OF Y GROVPS b 

a+(calcd., Eq. 1) o+(calcd. Eq. 2) 

-H 
-CH2 Ph 
--Me 

-C3H5 
--CHz SiMeg 
--CHZSiPhs 
-CH2 GeMq 
-CH:! GePh3 
-CHz SnMe3 
-CHnSnPhs 
-CHzPbPh3 
--CH2 HgPh 
---CH;?H~CBHI 1 
-CH2HizZ 

25.7 c 
24.4 d 
22.8 e 
21.3 d 
20.2 f 
22.2 f 
19.6 g 
20.6 6 
17.5-h 
18.8 f 
16.3 d 
15.8 h 
15.1 h 
21.1 h 

0.0 i -0.03 -0.07 
-0.17i -0.16 -0.21 
-0.31 i -0.31 -0.38 
-0.45i -0.45 4.54 
-0.54 h -0.55 -0.66 

-0.36 
-0.61 
-0.52 
-0.82 
-0.69 
-0.92 
-0.97 
-1.04 
-o-56 

a Solvent CH2 Cl2 : at 27 -C 3OC; vahxes listed are means of reported values of the lowest energy CT band, 
when availabIe: error of the mean -+0-l kk b kk = 103 cm-l. C R&S. 5.12. d Ref. 5. e Refs. 12. 13. 
f Refs. 5. 12-14. g Ref. 4. h Ref. 15. i Ref. 7. j Ref. 16. k Ref_ 6. 
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of interest here we would add the constraint that: the substituent -Y contain 
only CT- or K- bonding electrons. 

Table 1 contains a listing of Ph-Y compounds and the long-wavelength CT- 
absorption frequencies of their TCNE-complexes. The first five entries have 
been used to derive a regression line. 

(T + = 9.43 X lo-* v(kk) -2.46 

which differs slightly from that originally proposed by Traylor I: 51. 
(1) 

u + = 10.7 X lo-’ v(kk) -2.82 (2) 
The initial estimates of d-values based upon VINE values as shown in Table 1 

and calculated using eq. 1 can be used to extrapolate and interpolate values of 
(J* for substituents based on other photophysical data such as absorption spectra 
of 2-substituted pyridines [S] and substituted benzenes [9]. Notably lacking in 
these data sets are parameters for the estimation of the of-value of the 
-CH2PbMe, group. Since even benzyltrimethyltin undergoes electron-transfer 
oxidation with TCNE [lo], the likelyhood of obtaining reliable CT data for 
benzyltrimethyllead is small, however the bond polarizability-hyperconjugation 
model, vide infia, gives an easy means to extrapolate to the c+-constant of 
-CH2PbMe3, which value is in good agreement with that estimated from photo- 
electron spectroscopic data [ 111. 

The difference in cr+-values between the alkyl- and phenyl-substituted 
-CH,MR, groups shown in Table 1 is approximately constant and appears to 
be an inductive effect on the C-M bonds’ ability to hyperconjugate [15]. For 
the Group IV elements this effect can be expressed by the equation: 

o+ = “aR+” + 0.28 Zo, (3) 

“%+” (C) = -0.29; “oR+“(Si) = -6.49; “aa”’ = -0.59; “aa’” = -0.78; 
“cR+(Pb) = 0.99 

where Car is the sum of the inductive substituent constants for the three sub- 
stituents on the metal (or(Me) = -0.05 and cr(Ph) = +O.lO) 1171 and “oRf” is a 
measure of the resonance or hyperconjugative interaction of the -CH,MR, 
group. Because we have not accounted for the minor inductive effect of the 
--CH*MR, group as a whole, we differentiate CC~Rt” from the more correct cat. 

For mercury substituents, c+ can again be divided into inductive and resonance 
contributions and from the data in Table 3, eq. 4 can be derived for -CH2HgX 
substituents: 

c+ = “%+” + 1.07 or(X) (4) 
“o,+“(Hg) = -0.98 

Similar equations for the separation of inductive and hyperconjugative effects 
have been proposed by Eabom for the -CH2-Y (Y = electronegative group) 
groups [18] and eq. 4 is essentially a rearranged form of an earlier proposal by 
Traylor 1151. It should be noted that eqs. 3 and 4 treat inductive effects at the 
metal rather than the -CH,MR, group as a whole. Adcock, Cox and Kitching 
[19] have discussed the or-values of the Group IV metailo-methyl groups in 
detail and conclude that, at present, there is not one general scale for these 
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values, which are usually small, kO.05, and the derived values are both solvent 
and system dependent. Thus we consider (T+ = “o&f” + 0.28 I&r, in which the 
term r‘oR+” contains the minor component of -or for the entire -CH,MR, group. 
This approach is justified considering the relatively small or for the groups as a 
whole, the even smaller differences and the much larger effect that the ligand 
R, on the metal has on the o*-vaIue, as compared to its effect on or [19]. 

Bond polarizability-hyperconjugution (BPH) model 
In the vertical stabilization of an adjacent cationic center, the bonding inter- 

action between the developing p-orbital of the cation and the hyperconjugating 
@carbon-metal bond should be a strong function of the polarizabihty of the 
C-M bond: 

A direct dependence on the polarizability of the C-M bond would also apply to 
non-vertical processes such as bridging or intramolecular nucleophilic displace- 
ments [ZO] by o-bonds. We limit our discussion here in terms of vertical 09 
interactions (hyperconjugation) only because of the readily available data for 
CT-absorptions, a vertical process. As a convenient measure of C-M bond polariz 

Fig. 1. Relationship between the bond refraction (RD) of the carbon-metal bond in -CHZ-MFL3 and CT+ 
constant of the -CHzMR3 group: for R = Me. o+= -0.176 RD -0.097; for R = Ph, (it= -0.181 RD + 
0.055. 
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of the substituted group and thus only tetravalent Group IV meas are shown 
in Fig. 1. Of great interest would be the extension of this model to the linear 
-CH2--Hg-R substituents, which can be accomplished by the introduction of 
an additional disposable parameter which accommodates remote interactions 
due to the multivalency of M, i.e., considers the system -CH*M-R, where the 
M-R, bonds also contribute to the overall properties of the substituent. Such 
an effect has been noted before in the correlation of optical rotation and bond 
refraction for organometallic compounds [23]_ If the M-R, bonds also make a 
contribution to the overall hyperconjugative ability of the -CH,-M-R, sub- 
stituent then for R = alkyl, with an appropriate attenuation factor, CY, and induc- 
tive effects accounted for by eqs. 3 and 4, then eq. 5 is applicable, Fig. 2, in 
which 

“CR +” = -O.J_06 R,(l + WZ) -0.05 (5) 
n is the number of alkyl substituents on the metal and Q = 0.23 by least squares 
analysis. It has not escaped our attention that the interkept-of eq. 5 is approxi- 
mately equal to suggested o1 values for the isoinductive -CH?MR, groups Cl91 _ 
In view of the previous discussion on (Z+alues, however, we have chosen not to 
make the correction, “Oar” - oI = Q+, until a generally agreed upon set of or 
values is reported. Because of multivalency both Pb substituents (n = 3) and Hg 
substituents (n = 1) appear to possess the same hyperconjugative ability, 
“~R+“(-CHZPb) = -0.99, “LS= “‘(--CH,-Hg) = -0.98, in spite of the larger bond 
refraction of a C-Hg bond. 

By analogy to the ion-induced dipole interaction [24], the potential ener,v 
of the system G-C--& should be decreased by an increase in the polarizability 
of the C-G bond (at constant charge density on C,) and increased with increased 
charge density on C, (at constant polarizability of C-G) *. The first situation 
can be seen in the increase of the u+-constants along the series C-C < C-Si < 
C-Ge < C-Sn < C-Pb - C-Hg which follows the order of group refractions 
expressed as (1 + 0.23 n) R,. The effect of increasing charge density at C, has 
been expressed in the Sunko-Borcic-Servis relationship 1251, in which increasing 
charge density at C, in solvolysis reactions, as measured by k(CH,/H), is related 
to increasing fl-deuterium kinetic isotope effects. Since R, C-H > Ro C-D [26] 
an increased rate retardation is expected for P-deuterium substitution in solvo- 
lysis reactions of high Me/H ratios, vide infra. 

Suggested ualues of D+ for CH,-MR, substituents 
Multiple linear regression analysis of the TCNE CT data, bond refraction 

extrapolations, CT eequencies for dichloromaleic anhydride molecular com- 
plexes [ 51, absorption frequencies for 2-substituted pyridines [S] and benzyl 
organometallics [9 J leads to a “best” set of D+ values for the --CHZ-MR, sub- 
stituents listed in Table 3. Reinserting these values into the original TCNE-CT 
data set results in eq. 6: 

d = 9.46 X lo-* z+c&kk) -2.466 (6) 

*Itshouldbenatedthatthepo~ability ofa bondisdirectly relatedtothe fOrce-cO~t~t(see 
ref. 28(c),Chap.land+ef.25<c~,Chap. 2). 



TABLE 3 

“BEST” VALUES OF u+ FOR -CHzMR,, GROUPS 

Group ,,+a. b Group u+a,b 

-CHzSiPhs -0.38 + 0.02 --CH~H~C~H~I -1.04 2 0.03 
--CH2 SiMe3 a.54 c 0.01 -CHzHgCH2Ph -0.97 c 0.02 
-CH2 GePhg -0.51 i 0.02 -CH2 HgPh -0.83 C 0.02 
-CH2 GeMes -0.63 _C 0.02 -CH2 H&l 4.47 f 0.02 
-CH2SnPh3 -0.73 2 0.02 -CH2HgBr -0.50 i 0.02 
-CHZ SnMe3 -0.81 2 0.02 --CHzHgI -0.55 + 0.02 
--CH2 PbPh3 -0.90 + 0.02 
-CHzPbMe3 -1.03 f 0.03 

a Indicated errors are errors of the mean of several correlations. b Refer to Ref. 5 and references therein 
for previous estimates_ 

which has been used to estimate a number of o+ constants for organometallic 
substituents based upon TCNE-CT data, Table 4. 

Secondary kinetic isotope effects 
p-Deuterium isotope effects on solvolysis reactions have commonly been inter- 

preted in terms of hyperconjugative effects [28] and although the methyl group 
lacks the basic structural analogy to the CH,-MR, group and the use of eq. 5 is 

TABLE 4 

of-VALUES FOR MISCELLANEOUS ORGANOMETALLIC GROUPS 

Group u+o VTCNE Ref. 

Silicon 

-CH2SiBus --0.55 20.3 b 
--CH2SiF’rHZ 4.57 20.0 b 
-CHz SiMe2 @Hz Ph) -0.56 20.2 b 
-CHtSiH<CH2Ph)2 -0.45 21.3 b 
<HZ CH2SiMe3 -0.35 c b 
--CHzSi2Me5 -0.62 19.6 d, e 
-SiMe2SiMej -0.55 20.3 e 
-1-SijMe7 -0.67 19.0 e 
-2-SigMey -0.70 18.7 e 
-CH(SiBIe3)2 -0.65 19.2 e 
--C(SiMes)3 -0.68 18.9 e 

Germanium 

-CH2 GeEt3 -0.67 19.0 b 
-CH2Ge<OEt)3 -0.39 22.0 b 

-CH2Ge(CH2Ph)3 -0.57 20.0 b 
-CH2 Ge(CH2 Ph)z H -ix59 19.8 b 

Tin 

-CH(SnMeg)Z -1.06 c 

Lead 

-CH2CH2PbPh3 -0.08 25.2 f 

a Calculated from eq. 6. b Ref. 4. c Interpokted from absorption data in 2-substituted pyridiie. ref. 8. 
d Ref. 12. e Ref. 27. f Ref. 5. 
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probably inappropriate, the basic assumption that the hyperconjugative ability 
of a substituent is proportional to the bond relkaction of the hyperconjugating 
bond allows an estimation of the ratio of “Oar” values for @ C-H and /3 C-D 
bonds: 

d(CHd z RDtC-Hj 5 1.676= 1 0158 

u”(CH,D) - Rn(C-D) - 1.650 e 

thus o+(CH,D) = -0.3l/l.C158 s -0.305 
The Servis-Borcic-Sunko relationship [25b] : 

log k(CH3/CD3) = $og(CH,,H) (6) 

for the solvolysis of R,C(RI)X, (R, = CH3, CD, or H) derivatives has been very 
successful in the analysis of secondary deuterium isotope effects and is used in 
the form of eq. 7 which dissects the overall kinetic isotope effect into angular 
and inductive components: 

log k(H/D) = 0.66 cos*a [0.0195 + 0.02024 log k(CH,/H)] -0.00656 (7) 

where 13 is the dihedral angle between the hyperconjugating bond and the p- 
orbital of the carbonium ion. For 0 = 0”, eq. 7 reduces to: 

log k(H/D) = 1.34 X lo-’ log k(CH,/H) + 0.0064 . (8) 

By analogy to eq. 6 and from the a’-values for the -CH3 and -CH,D groups: 

log k(CHJCH2D) = 
Aa(CH3 - CH2D) 

c(CH,) 
log k (CHJH) 

with 

Aa(CH3 - CH2D) 
WH,) 

= 1 -l/1.0158 = 1.55 X lo-* 

Making a correction for the inductive effect [25b,29] of one -D gives 

log k(CH,/CH,D) = 1.55 X lo-’ log k(CH,/H) - 0.00656 _ (10) 

The BPH model gives a semi-empirical basis for estimating the slope of eq. 9 
and a comparison of the secondary-isotope effects calculated from these rela- 
tionships is shown in Table 5_ 

TABLE 5 

SECONDARY @DEUTERIUM ISOTOPE EFFECTS CALCULATED BY THE BPH AND SBS MODELS 
FOR THE SOLVOLYSIS OF R2 (R’) CX (R’ = CH3. CH2 D or H) 

log k(CH3/H) A(H/D) SBS W(H/D) BPH 

8 1.301 1.31 
6 1.223 1.22 
4 1.149 1.14 
2 1.080 1.06 
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Poly metal-containing substituen ts 
Both photophysical [8,27] and solvolysis [6] o’values are available for 

several groups which contain more than one carbon-metal bond capable of 
hyperconjugation, for example -CH(SiMe3),, -CH(SnMe& and -C(SiMe,),. 

Interactions in the most reasonable conformers for the dimetal systems show 
the C-M bonds at different dihedral angles, 8, to the p-orbital. Using the “~0s” 
rule” and ignoring any differences in the inductive effects and hyperconjugation 
of the off-axis C-H bonds, (T+ for -CH,_,(MR,), should be 

CT+ = cos2el((T~+) + cos20*(cT2+) + cos*8~(~~+) . (11) 
In conformation 2,6, = O”, f32 = GO”, Q3 = 60” and thus for -CH{MMe& 
IJ+ s 1.25 D+ (-CH,MMe,) and CT+ C(MMe3) s 1.5 o+ (-CH,MMe,), which gives 
oc -CH(SiMe& = -0.68 as compared to -0.65 (CT), -0.67 (pyridine) [S], 
-0.62 (solvolysis) [6]. For -CH(SnMe,),, (T+ = 1.25 cr+ (-CH2SnMe3) = -1.01 
as compared to -1.06 as extrapolated from absorption frequencies in 2-substi- 
tuted pyridines [S] . For structure 3,6 1 = 60”) e2 = 60”) o3 = 0” and (T+ (CHM?) z 
0.5 (T+ (---CH,M). F or structure 4, e1 = 30”) t12 = 30”, 19~ = 90” and e+ C(M,) = 
(T+ (CHM2) = 1.5 t.r+ (CH*M). Conformation 2 best accounts for the observed 
values. Major differences among the calculated (eq. 10) (-O-81), solvolytic [6] 
(-0.52), and CT-derived 1271 value (-0.68) for the -C(SiMe& group suggests 
that ground state and/or steric interactions may be playing an important role 
with this very bulky group_ 

The hyperconjugating ability of alkyi groups 
Although the C-H bond is more polarizable (R, = 1.676) than the C-C bond 

[21] (R, = l-296), C-C hyperconjugation is the more important since remote 

H 

H&J ,H 

‘\ O/” 

H..q-h\H 

H 

5 

“\ O/H 
H---i’-+H 

H 
6 

(1 + an)RD = 7.296 i- 0.23 x 3 x 1.676 (I + (Xn)Ro = 1.676 (n = 01 

(1 + Ch)RD = 2.46 (I + cXn)R,, = 1.676 
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contributions make the methyl group more polar&able than H, i.e., the group 
polarizability function, (1 + WZ) Rn, for methyl is greater than that for H. The 
preferred conformation for the 1-propyl cation [30 J would be as shown above 
with the C(Z)-C(3) bond eclipsing the p-orbital, 5. By the same argument, the 
purely hyperconjugative interaction of alkyl groups with an adjacent cationic 
center should increase with increasing group refraction, (1 + an) Rn, (eq. 5); 
-CH3 (X676), -CH,C(CH& (2.19), -CH&HJ (2.46). When the inductive fac- 
tors from eq. 3 are included however, the net effect is of (neopent) > c+ (Et). 
For any general substituent then, replacement of a H by Me leads to greater 
hyperconjugative stabilization and since o,(Me) < cI (H) the inductive factor 
should also lead to greater stabilization of a cationic center. The Baker-Nathan 
order 131 J is inconsistent with this prediction. 
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